
Chapter 1

System Realization Theory for Linear
Time-Invariant Systems

1.1 Introduction
Many algorithms have been established, some of them deterministic in nature, i.e. without
considering noise in the measured data, and others stochastic, i.e. with formulations mini-
mizing the noise uncertainty in the identification. During the 90s, building upon initial work
by Gilbert and Kalman, several methods has been developed to identify most observable and
controllable subspace of the system from given input-output (I/O) data [1, 2, 3, 4, 5, 6, 7].
Under the interaction of structure and control disciplines, the Eigensystem Realization Al-
gorithm (ERA) [8] was developed for modal parameter identification and model reduction
of dynamic systems using test data. The algorithm presents a unified framework for modal
parameter identification based on the Markov parameters (i.e., pulse response) making it
possible to construct a Hankel matrix as the basis for the realization of a discrete-time state-
space model. A few years later at NASA, Juang developed a method for simultaneously
identify a linear state-space model and the associated Kalman filter from noisy input-output
measurements. Known as the Observer/Kalman Identification Algorithm (OKID) and for-
mulated entirely in the time-domain, it computes the Markov parameters of a linear system,
from which the state-space model and a corresponding observer are determined simultane-
ously [9]. The method relies on an observer equation to compress the dynamics of the system
and efficiently estimate the associated system parameters (Markov parameters). In conjunc-
tion with the ERA, the method provides simultaneously both the Markov parameters and
the Kalman gain, extracting all the possible information present in the data. The observer
at the core of the method was proven to be the steady-state Kalman filter corresponding
to the system to be identified. Later, the ERA with Data Correlation (ERA/DC) is devel-
oped [10, 11, 12, 13, 14] and while the ERA is, in essence, a least-squares fit to the pulse
response measurements, the ERA/DC involves a fit to the output auto-correlation and cross-
correlations over a defined number of lag values.

This document presents the fundamentals of linear time-invariant system identification
and provides a common basis, definitions and notations to understand the techniques de-
veloped under the vast discipline of system identification. From discrete-time state-space
models, controllability and observability to the famous OKID/ERA procedure, this docu-
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ment introduces the basic building blocks that are crucial notions in the field of system
identification.

1.2 Time-Domain State-Space Models

1.2.1 Continuous-Time State-Space Models
The equations of motion for a finite-dimensional linear-dynamic system are a set of n first-
order differential equations (Eq. (1.1a)) along with an initial condition x(t0). The n-
dimensional state x(t) is most often related to the output through the measurement equation
Eq. (1.1b).

ẋ(t) = Acx(t) +Bcu(t), (1.1a)
y(t) = Cx(t) +Du(t). (1.1b)

The system of equations Eq. (1.1) constitutes a continuous-time state-space model of a
dynamical system. Given the initial condition x(t0) at some t = t0, solving for x(t) for t > t0
yields

x(t) = eAc(t−t0)x(t0) +
∫ t

t0
eAc(t−τ)Bcu(τ)dτ. (1.2)

Without loss of generality, we will consider that t0 = 0.

1.2.2 Discrete-Time State-Space Models
Dynamic systems are typically modeled by continuous-time or discrete-time equations. A
close approximation of a continuous-time model can be obtained by a discrete one provided
that the sampling rate is sufficiently high. A linear discrete system is most commonly de-
scribed by an nth order difference equation, the weighting sequence, or a discrete state-space
model.
Let ∆t be a constant time interval and f = 1/∆t the sampling rate. Continuous versions of
the A and B matrices are

A = eAc∆t, (1.3a)

B =
∫ ∆t

0
eAcτdτBc, (1.3b)

x(k + 1) = x((k + 1)∆t), (1.3c)
u(k) = u(k∆t). (1.3d)

The discrete-time matrices A and B in Eqs (1.3a) and (1.3b) may be computed by the
following series expansions:

A = eAc∆t =
∞∑
i=0

1
i! [Ac∆t]i , (1.4a)

B =
∫ ∆t

0
eAcτdτBc =

[ ∞∑
i=0

1
i!A

i
c (∆t)i+1

]
Bc. (1.4b)
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A sufficient condition for these series expansions to converge is that the continuous-time state
matrix Ac is asymptotically stable in the sense that the real parts of all its eigenvalues are
negative. If none of the eigenvalues of Ac are zero, the discrete-time matrix B may also be
computed by

B = [A− I]A−1
c Bc. (1.5)

Therefore, a discrete-time invariant linear system can be represented by

x(k + 1) = Ax(k) +Bu(k) (1.6a)
y(k) = Cx(k) +Du(k) (1.6b)

together with an initial state vector x(0), where x, u and y are the state, control input
and output vectors respectively. The constant matrices A, B, C and D with appropriate
dimensions represent the internal operation of the linear system, and are used to determine
the system’s response to any input.

1.2.3 Weighting Sequence Description and Markov Parameters
Solving for the state x(k) and the output y(k) with arbitrary initial condition x(0) in terms
of the previous inputs u(i), i = 0, 1, . . . , k, yields

x(k) = Akx(0) +
k∑
i=1

Ai−1Bu(k − i), (1.7a)

y(k) = CAkx(0) +
k∑
i=1

CAi−1Bu(k − i) +Du(k). (1.7b)

It appears naturally that the constant matrices sequence

h0 = D,

h1 = CB,

h2 = CAB,

...
hk = CAk−1B,

...

(1.8)

plays an important role in identifying a mathematical model for linear dynamical systems.
In fact, with zero initial condition x(0) = 0, considering the response to a pulse sequence
such that for j = 1, 2, . . . , r,

uj(i) =
{

1 for i = 0
0 for i = 1, 2, . . . (1.9)

the r corresponding outputs
{
y(j)(i)

}
i=1,2,...

can be assembled at each time step to recover
the sequence {hi}i=1,2,... as follows:

hi =
[
y(1)(i) y(2)(i) · · · y(r)(i)

]
. (1.10)
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The constant matrices in the sequence {hi}i=1,2,... are known as system Markov parameters
or, in short, Markov parameters. It is obvious that the matrices A,B,C,D are embedded in
the Markov parameter sequence; undeniably, the determination of Markov parameters should
be tantamount to system identification. The general form of the Markov parameters is thus

hi =


D i = 0,
CAi−1B i ≥ 1,
0 i < 0.

(1.11)

1.3 Controllability and Observability
Before solving for the Markov parameters, it is of great importance to know whether all
the states of a system can be controlled and/or observed since a solvable system of linear
algebraic equations has a solution if and only if the rank of the system matrix is full. While
controllability is concerned with whether one can design control input to steer the state to
arbitrarily values, observability is concerned with whether without knowing the initial state,
one can determine the state of a system given the input and the output.

1.3.1 Controllability in the discrete-time domain
A state x(q) is said to be controllable or state-controllable if this state can be reached from
any initial state of the system in a finite time interval by some control action. If all states
are controllable, the system is called completely controllable or simply controllable. Given
A,B and x(0), the idea is to find the sufficient and necessary condition to determine how
to reach x(q) without ambiguity. It is clear that since A and x(0) are given, it is therefore
equivalent to determine x(q) or x̃(q) = x(q)−Aqx(0): to determine complete controllability,
it is sufficient and necessary to determine whether the zero state (instead of all initial states)
can be transferred to all final states.

The solution to the discrete representation at time t = q∆t where ∆t is the sampling period
is

x(q) = Aqx(0) +
q∑
i=1

Ai−1Bu(q − i) (1.12)

or in a compact matrix form

x(q) = Aqx(0) +
[
B AB A2B · · · Aq−1B

]


u(q − 1)
u(q − 2)
u(q − 3)

...
u(0)

 . (1.13)

The expression of x̃(q) can be written as

x̃(q) = R(q)u (1.14)
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where

R(q) =
[
B AB A2B · · · Aq−1B

]
, (1.15)

and

u =



u(q − 1)
u(q − 2)
u(q − 3)

...
u(0)

 . (1.16)

R(q) is called the controllability matrix. Reaching x(q) without ambiguity is thus equivalent
to find a solution of Eq. (1.14) for u. Therefore, the discrete time-invariant linear system,
Eq. 1.6, of order n is controllable if and only if the n× qr block controllability matrix R(q)

has rank n (assuming qr > n).

1.3.2 Observability in the discrete-time domain
A state x(p) is observable if the knowledge of the input u(k) and output y(k) over a finite
time interval 0 ≤ k ≤ p− 1 completely determines the state x(p):

x(p) = Apx(0) +
p∑
i=1

Ai−1Bu(p− i). (1.17)

With knowledge of the system matrices A and B and the control input u(k), 0 ≤ k ≤ p−1, it
is necessary and sufficient to see whether the initial state x(0) can be completely determined
from the output sequence y(k), 0 ≤ k ≤ p− 1. In a compact matrix form, we can write

y =



y(0)
y(1)
y(2)
...

y(p− 1)

 =



C
CA
CA2

...
CAp−1

x(0) = O(p)x(0), (1.18)

where a unique solution for x(0) exists if and only if O(p) has rank n (full rank, assuming
pm > n). Thus, the discrete time-invariant linear system, Eq. 1.6, of order n is observable if
and only if the pm× n block observability matrix O(p) has rank n, where

O(p) =



C
CA
CA2

...
CAp−1

 . (1.19)

These two notions of controllability and observability will be of central attention in the next
section for the development of the Eigensystem Realization Algorithm.
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1.4 Coordinate Transformation
After having introduced the basic formulations of discrete-time invariant linear systems and
before going in depth in the narrative of the Eigensystem Realization Algorithm, some results
concerning coordinate transformation are introduced in this section.

In many problems, analysts need to use different coordinate systems in order to describe
different quantities. A well-chosen coordinate system allows position and direction in space to
be represented in a very convenient manner and allow sometimes to have some insights about
the system itself. After all, two independent observers might well choose coordinate systems
with different origins, and different orientations of the coordinate axes. The dynamic behav-
ior of a mechanical system strongly depends upon its mathematical representation. This is
due to the fact that nonlinearity is not an inherent attribute of a physical system, but rather
dependent upon the mathematical description of the system’s behavior. Ideally, one has an
infinity of coordinate choices to represent the same physical system. In the study of celestial
mechanics, the quest to find a judicious coordinate system led to the development of various
canonical transformations. An extended discussion will be conducted in section concerning
coordinate systems and transformations. This section only presents a few important results
for linear discrete-time invariant systems.

Let a new state vector be defined such that

x̃(k) = Tx(k), (1.20)

where T is a nonsingular square matrix. Substitution of Eq. (1.20) into Eqs. (1.6) yields{
x̃(k + 1) = TAT−1x̃(k) + TBu(k)
y(k) = CT−1x̃(k) + D̃u(k) (1.21)

The effect of the input u(k) on the output y(k) is unchanged for the system. Thus the
matrices {TAT−1, TB,CT−1, D} describe the same input-output relationship as the matrices
{A,B,C,D}:{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k) ⇔

{
x̃(k + 1) = Ãx̃(k) + B̃u(k)
y(k) = C̃x̃(k) + D̃u(k) (1.22)

with

x̃(k) = Tx(k), (1.23a)
Ã = TAT−1, (1.23b)
B̃ = TB, (1.23c)
C̃ = CT−1, (1.23d)
D̃ = D. (1.23e)

This transformation is called a similarity transformation. The fact that the input-output
relationship remains unchanged should also indicate that the pulse sequence, or Markov
parameters, is invariant through coordinate transformation. Indeed, for i ≥ 1,

h̃i = C̃Ãi−1B̃ = CT−1
(
TAT−1

)i−1
TB = CT−1TAi−1T−1TB = CAi−1B = hi. (1.24)
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As a result, there are an infinite number of state-space representations that produce the
same input-output description. Additionally, because matrices are similar if and only if they
represent the same linear operator with respect to (possibly) different bases, similar matrices
share all properties of their shared underlying operator (their rank in particular).

1.5 The Eigensystem Realization Algorithm (ERA)
The basic development of the state-space realization is attributed to Ho and Kalman [15]
who introduced the important principles of minimum realization theory. The Ho-Kalman
procedure uses the Hankel matrix to construct a state-space representation of a linear system
from noise-free data. The methodology has been modified and substantially extended to
develop the Eigensystem Realization Algorithm (ERA) [8] to identify modal parameters from
noisy measurement data.

1.5.1 Hankel matrices
System realization begins by forming the generalized Hankel matrix composed of the Markov
parameters:

H
(p,q)
k =


hk+1 hk+2 · · · hk+q
hk+2 hk+3 · · · hk+q+1
... ... . . . ...

hk+p hk+p+1 · · · hk+p+q−1

 = O(p)AkR(q). (1.25)

For the case when k = 0,

H
(p,q)
0 =


h1 h2 · · · hq
h2 h3 · · · hq+1
... ... . . . ...
hp hp+1 · · · hp+q−1

 = O(p)R(q). (1.26)

If pm ≥ n and qr ≥ n, matrices R(q) and O(p) are of rank maximum n. If the system is
controllable and observable, the block matrices R(q) and Op are of rank n. Therefore,

rank
[
H

(p,q)
0

]
= rank

[
O(p)R(q)

]
≤ min

(
rank

[
O(p)

]
, rank

[
R(q)

])
= n. (1.27)

Since rank
[
R(q)

]
= n (R(q) is non-singular, the system is assumed to be controllable), mul-

tiplying both sides by R(q)† yields

n = rank
[
O(p)

]
= rank

[(
O(p)R(q)

)
R(q)†

]
≤ rank

[
O(p)R(q)

]
= rank

[
H

(p,q)
0

]
. (1.28)

Hence we have
rank

[
H

(p,q)
0

]
= n. (1.29)

If the order is n, then the minimum dimension of the state matrix A is n× n and therefore,
for any k ≥ 0,

rank
[
H

(p,q)
k

]
= n. (1.30)

Thus, it appears that identifying the number of dominant singular values of the Hankel matrix
provides an indication about the unknown order of the reduced model to be identified.
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1.5.2 Hankel Norm Approximation
As described in the previous section, a singular value decomposition on the Hankel matrix
provides an insight about the order of the system. Even if more advanced methods for
distinguishing true modes from noise modes exist, a simple singular value plot often allows
the engineer to determine the order of the system. Thus, it is possible to observe the following
approximation

H
(p,q)
0 = UΣV ᵀ =

[
U (n) U (0)

] [Σ(n) 0
0 Σ(0)

] [
V (n)ᵀ

V (0)ᵀ

]
(1.31)

= U (n)Σ(n)V (n)ᵀ + U (0)Σ(0)V (0)ᵀ︸ ︷︷ ︸
'0

(1.32)

' U (n)Σ(n)V (n)ᵀ (1.33)

where U (n) and V (n) are orthonormal matrices:

U (n)ᵀU (n) = V (n)ᵀV (n) = I(n). (1.34)

Since H
(p,q)
0 is primarily represented by the controllability and observability matrices, a

balanced factorization leads to

H
(p,q)
0 = U (n)Σ(n)V (n)ᵀ = O(p)R(q) ⇒

 O(p) = U (n)Σ(n)1/2

R(q) = Σ(n)1/2
V (n)ᵀ

. (1.35)

This choice makes both O(p) and R(q) balanced. Notice that R(q)R(q)ᵀ = O(p)ᵀO(p) = Σ(n).
The fact that the controllability and observability matrices are equal and diagonal implies
that the realized system is as controllable as it is observable. This property is called an
internally balanced realization. It means that the signal transfer from the input to the state
and then from the state to the output are similar and balanced.

1.5.3 Minimum Realization
With k = 1 in Eq. (1.25), one obtains that

H
(p,q)
1 = O(p)AR(q) = U (n)Σ(n)1/2

AΣ(n)1/2
V (n)ᵀ, (1.36)

and a solution for the state matrix A becomes

Â = O(p)†H
(p,q)
1 R(q)† = Σ(n)−1/2

U (n)ᵀH
(p,q)
1 V (n)Σ(n)−1/2

. (1.37)

Moreover, from Eq (1.15) and (1.19), it is clear that the first r columns of R(q) form the
input matrix B whereas the first m rows of O(p) form the output matrix C. Defining Oi as
a null matrix of order i, Ii as an identity matrix of order i and

E(m)ᵀ =
[
Im Om · · · Om

]
, (1.38a)

E(r)ᵀ =
[
Ir Or · · · Or

]
, (1.38b)
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a minimum realization is given by

Â = O(p)†H
(p,q)
1 R(q)† = Σ(n)−1/2

U (n)ᵀH
(p,q)
1 V (n)Σ(n)−1/2

, (1.39a)

B̂ = R(q)E(r) = Σ(n)1/2
V (n)ᵀE(r), (1.39b)

Ĉ = E(m)ᵀO(p) = E(m)ᵀU (n)Σ(n)1/2
, (1.39c)

D̂ = h0. (1.39d)

The realized discrete-time model represented by the matrices Â, B̂, Ĉ and D̂ can be trans-
formed to the continuous-time model. The system frequencies and damping may then be
computed from the eigenvalues of the estimated continuous-time state matrix. The eigenvec-
tors allow a transformation of the realization to modal space and hence a determination of the
complex (or damped) mode shapes and the initial modal amplitudes (or modal participation
factors).

1.6 Observer Kalman Filter Identification
Most techniques to identify the Markov parameters sequence Eq. (1.11) are based on the
Fast Fourier Transform (FFT) of the inputs and measured outputs to compute the Frequency
Response Functions (FRFs), and then use the Inverse Discrete Fourier Transform (IDFT) to
compute the sampled pulse response histories. The discrete nature of the FFT causes one to
obtain pulse response rather than impulse response, and a somewhat rich input is required
to prevent numerical ill-conditioning. Indeed, the FRF is a ratio between the output and
input DFT transform coefficients which requires the input signal to be rich in frequencies
so that the corresponding quantity is invertible. However, considerable information can be
deduced simply by observing frequency response functions, justifying why FRFs are still
generated so often. Another approach is to solve directly in the time domain for the system
Markov parameters from the input and output data. In [9], a method has been developed to
compute the Markov parameters of a linear system in the time-domain. A drawback of this
direct time-domain method is the need to invert an input matrix which necessarily becomes
particularly large for lightly damped systems. Rather than identifying the system Markov
parameters which may exhibit very slow decay, one can use an asymptotically stable observer
to form a stable discrete state-space model for the system to be identified. The method is
referred as the Observer/Kalman filter Identification algorithm (OKID) and is a procedure
where the state-space model and a corresponding observer are determined simultaneously
[16, 17].

1.6.1 Classical Formulation
Considering a sequence of l elements, assuming zero initial condition x(0) = 0:

y(l − 1) =
l−1∑
i=1

CAi−1Bu(l − 1− i) +Du(l − 1). (1.40)

In a matrix form, Eq. (1.40) is written as

ȳ = Y U (1.41)
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with

ȳ =
[
y(0) y(1) y(2) · · · y(l − 1)

]
, (1.42a)

Y =
[
D CB CAB · · · CAl−2B

]
, (1.42b)

U =



u(0) u(1) u(2) · · · u(l − 1)
u(0) u(1) · · · u(l − 2)

u(0) · · · u(l − 3)
. . . ...

u(0)

 . (1.42c)

The matrix ȳ is an m × l output data matrix and the matrix Y , of dimension m × rl,
contains all the Markov parameters to be determined. As summarized in Table 1.1, Eq.
(1.41) is insolvable in the multi-input multi-output case in general: the solution Y is not
unique whereas it should be (Markov parameters must be unique for a finite-dimensional
linear system). The matrix Y can only be uniquely determined from this set of equations for
r = 1. However, even in this case, if the input has zero initial value or is not rich enough in
frequency content or if anything makes the matrix U ill-conditioned, the matrix Y = ȳU−1

cannot be accurately computed.

Table 1.1: Equations vs Unknowns for Eq. (1.41)
# Equations # Unknowns

m× l m× rl

However, if A is asymptotically stable so that for some l0, CAkB ' 0 for all time steps k ≥ l0,
Eq. (1.41) can be approximated by

ȳ ' Ỹ Ũ , (1.43)

with

ȳ =
[
y(0) y(1) y(2) · · · y(l − 1)

]
, (1.44a)

Ỹ =
[
D CB CAB · · · CAl0−1B

]
, (1.44b)

Ũ =



u(0) u(1) u(2) · · · u(l0) · · · u(l − 1)
u(0) u(1) · · · u(l0 − 1) · · · u(l − 2)

u(0) · · · u(l0 − 2) · · · u(l − 3)
. . . ... · · · ...

u(0) · · · u(l − l0 − 1)

 . (1.44c)

Choose the data record length l greater than r(l0 + 1) and Eq. (1.43) indicates that there are
more equations than constraints, as summarized in Table 1.2. It follows that the first l0 + 1
Markov parameters approximately satisfy

Ỹ = ȳŨ
†
, (1.45)

and the approximation error decreases as l0 increases.
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Table 1.2: Equations vs Unknowns for Eq. (1.43)
# Equations # Unknowns

m× l m× r(l0 + 1)

Unfortunately, for lightly damped structures, the integer l0 and thus the the data length l
required to make the approximation in Eq. (1.43) valid becomes impractically large in the
sense that the size of the matrix Ũ is too large to solve for its pseudo-inverse numerically. A
solution to artificially increase the damping of the system in order to allow a decent numerical
solution is to add a feedback loop to make the system as stable as desired.

1.6.2 State-space Observer Model
In practice, the primary purpose of introducing an observer is an artifice to compress the
data and improve system identification results. A state estimator, also known as an observer,
can be used to provide an estimate of the system state from input and output measurements.
Add and subtract the term Gy(k) to the right-hand side of the state equation in Eq. (1.6a)
to yield

x(k + 1) = Ax(k) +Bu(k) +Gy(k)−Gy(k) (1.46a)
= (A+GC)x(k) + (B +GD)u(k)−Gy(k) (1.46b)
= Āx(k) + B̄v(k) (1.46c)

where

Ā = A+GC, (1.47a)
B̄ =

[
B +GD −G

]
, (1.47b)

v(k) =
[
u(k)
y(k)

]
, (1.47c)

and G is an arbitrary matrix chosen to make the matrix Ā as stable as desired. The Markov
parameters of this observer system are referred as observer Markov parameters. The new
input-output in matrix form is therefore

ȳ = Ȳ V (1.48)

with

ȳ =
[
y(0) y(1) y(2) · · · y(l − 1)

]
, (1.49)

Ȳ =
[
D CB̄ CĀB̄ · · · CĀl−2B̄

]
, (1.50)

V =



u(0) u(1) u(2) · · · u(l − 1)
v(0) v(1) · · · v(l − 2)

v(0) · · · v(l − 3)
. . . ...

v(0)

 . (1.51)
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Table 1.3: Equations vs Unknowns for Eq. (1.48)
# Equations # Unknowns

m× l m× ((r +m)(l − 1) + r)

Similarly as before, when CĀkB̄ ' 0 for all time steps k ≥ l0 for some l0, Eq. (1.48) can be
approximated by

ȳ ' ˜̄
Y Ṽ , (1.52)

with

ȳ =
[
y(0) y(1) y(2) · · · y(l − 1)

]
, (1.53)˜̄

Y =
[
D CB̄ CĀB̄ · · · CĀl0−1B̄

]
, (1.54)

Ṽ =



u(0) u(1) u(2) · · · u(l0) · · · u(l − 1)
v(0) v(1) · · · v(l0 − 1) · · · v(l − 2)

v(0) · · · v(l0 − 2) · · · v(l − 3)
. . . ... · · · ...

v(0) · · · v(l − l0 − 1)

 . (1.55)

Table 1.4: Equations vs Unknowns for Eq. (1.52)
# Equations # Unknowns

m× l m× ((r +m)l0 + r)

The first l0 + 1 observer Markov parameters approximately satisfy
˜̄
Y = ȳṼ

†
, (1.56)

and the approximation error decreases as l0 increases. To solve for ˜̄Y uniquely, all the rows
of Ṽ must be linearly independent. Furthermore, to minimize any numerical error due to
the computation of the pseudo-inverse, the rows of Ṽ should be chosen as independently as
possible. As a result, the maximum value of l0 is the number that maximizes the quantity
(r+m)l0 + r ≤ l of independent rows of Ṽ . The maximum l0 means the upper bound of the
order of the deadbeat observer. Furthermore, it is known that the rank of a sufficiently large
Hankel matrix H

(p,q)
0 is the order of the controllable and observable part of the system (the

identified state matrix Â represents only the controllable and observable part of the system).
The size of the Hankel matrix is pm × qr comprised of p + q − 1 Markov parameters; with
p = q, this means 2p − 1 Markov parameters. If l0 is the number of Markov parameters
calculated through OKID, it means that l0 = 2p− 1. Assuming qr > n, the maximum rank
of H

(p,q)
0 is thus mp. If p is chosen such that mp ≥ n, then a realized state matrix Â with

order n should exist. Therefore, the number of Markov parameters computed, l0, must be
chosen such that

mp ≥ n⇔ m
l0 + 1

2 ≥ n, (1.57)
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where m is the number of outputs and n is the order of the system. To conclude, the lower
and upper bounds on l0 are

2n
m
− 1 ≤ l0 ≤

l − r
r +m

(1.58)

with l being the length of the input signal considered.

The observer Markov parameters can then be used to compute the Markov parameters
and the matrices A, B, C and D.

1.6.3 Computation of Markov parameters from observer Markov
parameters

To recover the system Markov parameters from the observer Markov parameters, write

h̄0 = D, (1.59a)
h̄k = CĀk−1B̄ (1.59b)

=
[
C(A+GC)k−1(B +GD) −C(A+GC)k−1G

]
(1.59c)

=
[
h̄

(1)
k −h̄(2)

k

]
(1.59d)

Thus, the Markov parameter h1 of the system is simply

h1 = CB = C(B +GD)− (CG)D = h̄
(1)
1 − h̄

(2)
1 D = h̄

(1)
1 − h̄

(2)
1 h0. (1.60)

Considering the product

h̄
(1)
2 = C(A+GC)(B +GD) = CAB + CGCB + C(A+GC)GD = h2 + h̄

(2)
1 h1 + h̄

(2)
2 h0,
(1.61)

the next Markov parameter is

h2 = CAB = h̄
(1)
2 − h̄

(2)
1 h1 − h̄(2)

2 h0. (1.62)

Note that the sum of subscript(s) of each individual term both sides is identical. By induction,
the general relationship between the actual system Markov parameters and the observer
Markov parameters is

h0 = h̄0, (1.63a)

hk = h̄
(1)
k −

k∑
i=1

h̄
(2)
i hk−i, for k ≥ 1. (1.63b)

1.7 The ERA from initial condition response
The state-variable response of a system described by Eq. (1.6) with zero input and an
arbitrary set of initial conditions x(0) is:

x(k) = Akx(0), (1.64a)
y(k) = CAkx(0). (1.64b)
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In that situation, the significance of previously defined Markov parameters is gone. As they
are originally defined as pulse response, there is no worthwile definition for these matrices
here. Similarly, there is no meaning for controllability in this case as the input control is
set to zero. However, referring to section 2.2.2, the concept of observability is still relevant.
Even though observability and controllability of a linear system are mathematical duals, the
concept of observability is just a measure of how well internal states of a system can be
inferred from knowledge of its external outputs. The same way observability was previously
defined, the discrete time-invariant linear system, Eq. (1.64), of order n is observable if and
only if the pm× n block observability matrix O(p) has rank n, where

O(p) =



C
CA
CA2

...
CAp−1

 . (1.65)

Even though controllability has no substantial meaning, it is possible to define a controllability-
like matrix, named Q(q), that gathers the state variable at different times:

Q(q) =
[
x(0) Ax(0) A2x(0) · · · Aq−1x(0)

]
. (1.66)

Since x(0) is a n-dimensional vector and A ∈ Rn×n, Q(q) ∈ Rn×q and has rank n from the
moment q ≥ n.

Let’s now define a Hankel matrix as

H
(p,q)
k =


y(k) y(k + 1) · · · y(k + q − 1)

y(k + 1) y(k + 2) · · · y(k + q)
... ... . . . ...

y(k + p− 1) y(k + p) · · · y(k + p+ q − 2)

 = O(p)AkQ(q). (1.67)

For the case when k = 0,

H
(p,q)
0 =


y(0) y(1) · · · y(q − 1)
y(1) y(2) · · · y(q)
... ... . . . ...

y(p− 1) y(p) · · · y(p+ q − 2)

 = O(p)Q(q). (1.68)

If pm ≥ n and q ≥ n, matrices Q(q) and O(p) are of rank maximum n. If the system is
observable, the block matrix Op is of rank n and

rank
[
H

(p,q)
k

]
= n. (1.69)

Following the exact same steps as for the classical ERA, it leads to

H
(p,q)
0 = U (n)Σ(n)V (n)ᵀ = O(p)Q(q) ⇒

 O(p) = U (n)Σ(n)1/2

Q(q) = Σ(n)1/2
V (n)ᵀ

, (1.70)
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and a minimum realization is given by

Â = O(p)†H
(p,q)
1 Q(q)† = Σ(n)−1/2

U (n)ᵀH
(p,q)
1 V (n)Σ(n)−1/2

, (1.71a)

Ĉ = E(m)ᵀO(p) = E(m)ᵀU (n)Σ(n)1/2
, (1.71b)

x̂0 = Q(q)E(1) = Σ(n)1/2
V (n)ᵀE(1). (1.71c)

Note that this formulation is very close to the classical ERA formulation.

Table 1.5: Classical ERA vs ERA with Initial Condition Response
Classical ERA ERA with Initial Condition Response

H
(p,q)
k ∈ Rpm×qr H

(p,q)
k ∈ Rpm×q

R(q) =
[
B AB · · · Aq−1B

]
∈ Rn×qr Q(q) =

[
x(0) Ax(0) · · · Aq−1x(0)

]
∈ Rn×q

V (n)ᵀ ∈ Rn×qr V (n)ᵀ ∈ Rn×q

B̂ = R(q)E(r) x̂0 = Q(q)E(1)

1.8 The ERA with Data Correlations (ERA/DC)
The Eigensystem Realization Algorithm with Data Correlations (ERA/DC) includes an ad-
ditional fit to output correlations whereas the ERA is basically a least-square fit to the pulse
response measurements only. The bias terms affecting the ERA when noise is present can,
in principle, be omitted in the ERA/DC by properly tuning some of the parameters. The
computational steps of the ERA/DC are outlined in this section.

1.8.1 Block Correlation Hankel Matrices
The ERA method with Data Correlation (ERA/DC) requires the definition of a square matrix
of order γ = mp,

RHH(k) = H(k)H(0)ᵀ (1.72)

=


hk+1 hk+2 · · · hk+q
hk+2 hk+3 · · · hk+q+1
... ... . . . ...

hk+p hk+p+1 · · · hk+p+q−1



h1 h2 · · · hq
h2 h3 · · · hq+1
... ... . . . ...
hp hp+1 · · · hp+q−1


ᵀ

(1.73)

=



q∑
i=1

hk+ih
ᵀ
i

q∑
i=1

hk+ih
ᵀ
i+1 · · ·

q∑
i=1

hk+ih
ᵀ
p+i−1

q∑
i=1

hk+i+1h
ᵀ
i

q∑
i=1

hk+i+1h
ᵀ
i+1 · · ·

q∑
i=1

hk+i+1h
ᵀ
p+i−1

... ... . . . ...
q∑
i=1

hk+p+i−1h
ᵀ
i

q∑
i=1

hk+p+i−1h
ᵀ
i+1 · · ·

q∑
i=1

hk+p+i−1h
ᵀ
p+i−1


(1.74)



Damien Guého djg76@psu.edu

Note that the data correlation matrix RHH(k) can be smaller in size than the Hankel matrix
H(k) if qr ≤ pm.
For the case when k = 0, the correlation matrix RHH(0) becomes

RHH(0) = H(0)H(0)ᵀ (1.75)

=


h1 h2 · · · hq
h2 h3 · · · hq+1
... ... . . . ...
hp hp+1 · · · hp+q−1



h1 h2 · · · hq
h2 h3 · · · hq+1
... ... . . . ...
hp hp+1 · · · hp+q−1


ᵀ

(1.76)

=



q∑
i=1

hih
ᵀ
i

q∑
i=1

hih
ᵀ
i+1 · · ·

q∑
i=1

hih
ᵀ
p+i−1

q∑
i=1

hi+1h
ᵀ
i

q∑
i=1

hi+1h
ᵀ
i+1 · · ·

q∑
i=1

hi+1h
ᵀ
p+i−1

... ... . . . ...
q∑
i=1

hp+i−1h
ᵀ
i

q∑
i=1

hp+i−1h
ᵀ
i+1 · · ·

q∑
i=1

hp+i−1h
ᵀ
p+i−1


(1.77)

The matrix RHH(0) consists of auto-correlations of Markov parameters such as
q∑
i=1

hih
ᵀ
i and

cross-correlations between outputs such as
q∑
i=1

hih
ᵀ
i+1 at lag time values in the range ±p,

summed over q values. If noises in the Markov parameters are not correlated, the correlation
matrix RHH(0) will contain less noise than the Hankel matrix H(0).

In terms of controllability and observability matrices, RHH(k) can be written as

RHH(k) = OpA
kRqR

ᵀ
qO

ᵀ
p = OpA

kRγ, (1.78)

where Rγ = RqR
ᵀ
qO

ᵀ
p.

The data correlation matrix RHH(k) can be used to form a block correlation Hankel matrix

H(k) =


RHH(k) RHH(k + τ) · · · RHH(k + ζτ)

RHH(k + τ) RHH(k + 2τ) · · · RHH(k + (ζ + 1)τ)
... ... . . . ...

RHH(k + ξτ) RHH(k + (ξ + 1)τ) · · · RHH(k + (ξ + ζ)τ)



=


Op

OpA
τ

...
OpA

ξτ

Ak
[
Rγ AτRγ · · · AζτRγ

]

= OξA
kRζ .

(1.79)
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For the case when k = 0,

H(0) =


RHH(0) RHH(τ) · · · RHH(ζτ)
RHH(τ) RHH(2τ) · · · RHH((ζ + 1)τ)

... ... . . . ...
RHH(ξτ) RHH((ξ + 1)τ) · · · RHH((ξ + ζ)τ)



=


Op

OpA
τ

...
OpA

ξτ


[
Rγ AτRγ · · · AζτRγ

]

= OξRζ .

(1.80)

τ is an integer chosen to chosen to prevent significant overlap of adjacent correlation blocks.
The matrices Rζ and Oξ are called the block correlation controllability and observability
matrices.

1.8.2 Hankel Norm Approximation
Similarly to the ERA, the ERA/DC process continues with the factorization of the block
correlation matrix H(0) using singular value decomposition so that

H(0) = UΣVᵀ =
[
Un U0

] [Σn 0
0 Σ0

] [
Vᵀ
n

Vᵀ
0

]
= UnΣnVᵀ

n + U0Σ0Vᵀ
0︸ ︷︷ ︸

'0

' UnΣnVᵀ
n, (1.81)

and

H(0) = UnΣnVᵀ
n = OξRζ ⇒

{
Oξ = UnΣ1/2

n

Rζ = Σ1/2
n Vᵀ

n

. (1.82)

Again, this choice makes both Oξ and Rζ balanced.

1.8.3 Minimum Realization
From Eq. (1.80) we have directly

Op = Eᵀ
γOξ = Eᵀ

γUnΣ1/2
n . (1.83)

From Eq. (1.26), an expression of Rq can be found

Rq = O†pH(0) =
[
Eᵀ
γUnΣ1/2

n

]†
H(0), (1.84)

and a realization is shown to be

Â = O†ξH(1)R†ζ = Σ−1/2
n Uᵀ

nH(1)VnΣ−1/2
n , (1.85a)

B̂ = RqEr =
[
Eᵀ
γUnΣ1/2

n

]†
H(0)Er, (1.85b)

Ĉ = Eᵀ
mOp = Eᵀ

mEᵀ
γUnΣ1/2

n , (1.85c)
D̂ = h0. (1.85d)
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1.9 Conclusion
In this Chapter, several complementary methods have been developed for linear system iden-
tification and have been derived using system realization theory, with most methods working
well on simulated and test data. The relations between different techniques have been demon-
strated and the choice of methods can be made largely on the basis of the final purpose of
the identification, for example, control flexible structures. There are many analytical advan-
tages of a linear approximation and, therefore, the search for a linear domain in the system’s
operational range (if such exists) is crucial. For example, the OKID/ERA method has been
successfully applied to identification of real systems, including a linear model of the space
shuttle remote manipulator based on a nonlinear simulation code, and the Hubble Space
Telescope.
However, the main difficulty in linear system identification applications stems from the inter-
play of noise and unmodeled dynamics. Noise, finite length of data, and parameters variation
are some of the issues that limit the application of such methods and there are many instances
when this limitation is significant enough that it becomes necessary to deal with situations
where no model in the model set can adequately describe the real system behavior.
In addition, most systems are only linear to a first approximation. Depending on the excita-
tion level, the output is disturbed by nonlinear distortions so that the linearity assumption
no longer holds. This immediately limits the application of the results obtained by the linear
system identification framework.
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